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1 Introduction

The purpose of the Balmorel project is the construction of a partial equilibrium
model covering the electricity and CHP sectors in the countries around the Baltic
Sea suited for the analysis of relevant policy questions to the extent that these
contain substantial international aspects.

In this paper we give some of the theoretical background for the Balmorel
model. The description aims at presenting some basic ideas and properties.

This document is part of a series that together documents the Balmorel model:

Balmorel: A Model for Analyses of the Electricity and CHP Markets in the
Baltic Sea Region (Main Report)

The Balmorel Model: Theoretical Background (this document)

The Balmorel Model structure

Balmorel data documentation

Balmorel: Getting started

The present document contains a brief discussion of the relations between the
theoretical derivations and the implementation.Observe however that the notation
in the present document is not harmonised with the notation in the Balmorel
model implementation. This is intentional, because we have here aimed at a
more general and mathematically oriented presentation, which is not suited for the
names convention, nor for the details of the model structure used in the GAMS
language in which the Balmorel is implemented.

Further information, including application examples, may be found at the
homepage of the project, www.balmorel.com.

2 The Generation System

2.1 Generation technologies

Generation of heat and electricity - i.e., conversion of other energy forms to heat
and electricity - is undertaken in generation units. A generation unit has a number
of characteristics, in particular

• a set of feasible combinations of heat (h) and electricity (e) generation

• an efficiency, specifying how much useful energy in the form of heat and/or
electricity can be taken out for each unit of primary energy input

• what kind of primary fuels the unit can use

• environmental aspects, specifying how much emission is generated for each
unit of primary energy input

• economic aspects, in particular operation and maintenance costs, and invest-
ment costs for new capacity.

Further, technological development may take place, this is represented by spec-
ifying that some technologies are available only from a certain year, cf. Section
10.

All the characteristics of a unit are represented by a set of linear relations.
Thus, for instance for unit i the set of feasible combinations of heat and electricity
generation may be specified as

gi(ei, hi) ≤ 0 (1)
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where gi for each i represents a set of linear expressions and ei and hi are the
electricity and heat generation, respectively.

The emission characteristics may be expressed relative to the generation of
electricity and heat, depending e.g. on the individual unit or on the fuel type,
or a combination. Thus, emissions of a particular type m (e.g. CO2 or SO2) on
unit i (assuming that this also specifies the particular fuel and other necessary
characteristics) could be expressed as a linear expression symbolised by

Φm(ei, hi) (2)

Similar linear relations may be specified for the other characteristics. See in
particular Section 2.2 for costs, and Section 10 for investment costs.

2.2 Supply function

In the exposition in Section 8 it is assumed that the generation cost function C
(the supply function) is explicitly given. However, this will not be the case, and
we therefore show how to extend the above result in this respect.

The function C may in a situation with many generation technologies, many
producers and perfect competition between them be seen as the supply function
derived as follows. An assumption of perfect competition implies that for any
total output (e, h) the generation is constituted such that it is done the cheapest
possible way, and in the same way as if it had been centrally planned. Therefore
for any (e, h) the cost C may be found as

C(e, h) = min
ei,hi

[
I∑

i=1

Ci(ei, hi)] (3)

gi(ei, hi) ≤ 0, ∀i (4)
I∑

i=1

ei = e (5)

I∑

i=1

hi = h (6)

It is here assumed that there are I technologies available, each one defined
on the set given by the constraint (4) (identical to (1)) and each one with a cost
function Ci. Together these technologies produce the quantities e and h as required
in (5) and (6).

If it is assumed that all gi and Ci are convex then C as defined in (3) - (6) is
convex, and it is quite obvious that this derivation of C may be substituted into
the problem (66) such that it reads

max
e,h,ei,hi

[Ue(e) + Uh(h)−
I∑

i=1

Ci(ei, hi)] (7)

where the optimisation is subject to the constraints (4) - (6), and the optimisation
is with respect to variables e, h and ei, hi, i = 1, . . . , I.

While the assumptions taken on gi and Ci indeed assure that C defined in (3) -
(6) is convex, C is not necessarily continuously differentiable. This may invalidate
(67) - (68). However, this does not invalidate the desired notion of balanced
marginal values, it only requires the application of a more general definition of
derivative, cf. (69).

3 Geographical Distinctions

The model permits specification of geographically distinct areas. On the supply
side the primary reasons for this are related to possibilities of application of and
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restrictions on generation technologies and resources, to transmission and distri-
bution constraints and costs, and to different national characteristics. On the
demand side the reason is the need for specifying different trajectories and elas-
ticities according to consumers’ geographically distinct characteristics.

The three basic types of geographical units are areas, regions and countries,
and they are related such that a region contains areas while a country contains
regions.

As a consequence of this, most exogenous variables will be specified individu-
ally, according to the geographical entity, to which they refer. In particular this
concerns demand ( cf. Section 7), generation technologies (specified for each area,
cf. Section 2), electricity transmission (between regions) and distribution (such
that electricity distribution is specified by region and heat distribution is specified
by area, cf. Section 5).

Further, the endogenous variables will be specified relative to the geographical
entities. In particular this concerns generation (Section 2), transmission (Section
5) and consumption (cf. Section 7).

4 Time

The model operates with several time periods. We may distinguish between time
periods within the year (i.e., a subdivision of the year) and between the individual
years. The latter will be discussed further in Section 10.

Let the year be divided into T time periods, t = 1, . . . , T (further refinement
is discussed in Section 4.3). This implies that most exogenous and endogenous
variables must be specified with an index t, in particular in relation to generation
(Section 2), transmission (Section 5) and consumption (cf. Section 7).

For some basic analyses the sequence of the time segments within a year is of
no importance. Hence, the representation of time segments may for such purpose
be done equally well by a duration curve representation as by a chronological
one. The former may have an advantage in terms of computational efforts upon
solution of the model. However, the chronological representation of time may be
necessary for modeling of certain components, e.g. whenever intertemporal storage
is important, see Section 4.3.

4.1 Demand

It will be assumed that for each time period a demand function can be specified
as discussed in Section 7. In particular this implies that there is no substitution
between demand in the different time periods, between different geographical units
or between heat and electricity demands.

Further, consumption will be found for each time period t.

4.2 Generation

Generation cost functions will have to be specified for each time period t, and
generation quantities will also have to be found for each time period.

As concerns investments in new generation technology the following is assumed.
At the beginning at the year it is possible to invest in new generation capacity
e and h representing electricity and heat, respectively. This capacity is available
from the beginning of the year. Total generation capacity therefore throughout
the year consists of the old capacity, existing at the beginning of the year, and the
new capacity.

Total generation cost on the old and the new technologies in time period t
is given by the functions Cold

t and Cnew
t , respectively. Investments costs for the

new technology is Cinv (see more on this in Section 10). Generation quantities
of electricity and heat on the old and new technologies are eold, hold, enew and
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hold, respectively. The total costs of generation and investment during the year
will therefore be

Cinv(e, h) +
T∑

t=1

Cold
t (eold

t , hold
t ) +

T∑
t=1

Cnew
t (enew

t , hnew
t ) (8)

and the constraints on the generation of the individual units will be

gold
t (eold

t , hold
t ) ≤ 0,∀t (9)

gnew
t (enew

t , hnew
t ) ≤ 0,∀t (10)
enew
t ≤ e,∀t (11)

hnew
t ≤ h,∀t (12)

Optimisation is with respect also to e and h. These variables may in turn be
restricted, e.g. because of resource limitations or policy decisions. Further, the
expansion of new generation capacities may be more or less constrained.

Observe that in relation to transmission (see Section 5) similar constructions
are used, such that at the beginning of a year it is possible to invest in new
transmission capacity.

4.3 Storages

Apart from what has already been discussed, the representation of more than one
time period per year is necessary for representation of the functioning of some
generation technologies, e.g. those with intertemporal storages such as hydro
power.

Assume that a certain amount w of hydro power is made available at the begin-
ning of the year and let ew

t be the generation of hydro power during time period
t. Then the reservoir balance equation to be fulfilled by the hydro generation
technology is

T∑
t=1

ew
t ≤ w (13)

Such modeling is valid under the assumptions that there are no limits on the
storage capacity nor on the amounts taken in or out of the storage, and no costs
depending on the amount stored nor on the amounts taken in or out of the storage.

If such components shall be represented then a more appropriate model could
be

vt+1 = αvt + βinein
t − βouteout

t − γ + wt (14)
v ≤ vt ≤ v (15)
ein ≤ ein

t ≤ ein (16)
eout ≤ eout

t ≤ eout (17)
initial and final conditions on v (18)

The modeling may be further refined, but we shall not go into detail with this,
see the documentation mentioned on page 5.

5 Transmission and Distribution

As concerns the transmission and distribution characteristics these relate to each
of the two products, electricity and heat. The two kinds of products are handled
differently, essentially because for a model covering a large geographical region like
the Baltic Sea area, transmission of electricity may be seen as being possible while
transmission of heat may not. See Figure 1.

The modeling of distribution and transmission is quite simplified, in line with
the modeling of the generation system.
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Figure 1: Connections between generation, consumption, distribution and trans-
mission in one region, with one electrical transmission connection to another re-
gion.

5.1 Electricity transmission

In order to represent transmission characteristics on electricity the model operates
with regions. Within each region the electrical transmission system is considered
to be so strongly developed that there are no constraints on the electricity flow.
Thus, it may in this respect be considered that in this region all electricity is pro-
duced in one node (point) and consumed in another node. Between the generation
and consumption nodes there are no constraints, however there is a loss on the
electricity flow between the two nodes.

Electricity may be transmitted between the regions or more specifically, be-
tween the regions’ generation nodes. The transmission implies a loss, proportional
to the amount of electricity transmitted such that the region importing electricity
is receiving less than that which is exported from the exporting region due to the
loss.

Let x(a,b) denote the amount of electricity exported from region j towards
region i, and let εx(j,i) denote the loss related to this transmission. Then the
amount of electricity entering the importing region i is

x(j,i)(1− εx(j,i)) (19)

Here, as elsewhere, losses are given as real number in the interval [0, 1).
Further, transmission can not exceed the transmission capacity. The amount

transmitted is in this respect considered as that which is sent out of a region.
Hence, the formula for the electrical transmission constraint is

x(j,i) ≤ x̂(j,i) (20)

where x(j,i) is the electricity exported and x̂(j,i) is the upper limit on this quantity.
Observe that due to the loss, a transmission constraint must be specific as to

whether it refers to the amount of electricity entering or leaving the transmission
line; in (20) the former was used.

See Section 4.2 for a description of how the transmission capacity may be
increased.

Transmission also implies a cost specified by the coefficient βx(j,i), such that
transmission cost is βx(j,i)x(j,i) for the transmission of xj,i) out of j towards i.
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5.2 Electricity exchange with third countries

Electricity may be exchanged with third countries (i.e., countries or electricity
regions not otherwise explicitly modeled). This can be handled as fixed quantities
(exogenously given). Such model elements can be thought of as generation patterns
located in regions in a third countries, if these were included explicitly in the model.
Hence, this does not require any modifications of the general setup of the present
document.

5.3 Electricity distribution

Within each region there is a loss due to the distribution of electricity from produc-
ers (i.e., generation nodes) to consumers. This loss, proportional to the electricity
entering the distribution network, is represented by the term εe. Observe that
there are no distribution constraints. The loss implies that

ed = es(1− εe) (21)

where es and ed are the amounts of electricity arriving at the consumers and
entering the distribution network, respectively. (Observe that due to the possibility
of transmission, the amount of electricity entering the distribution network in a
region need not be identical to electricity generation in that region.)

Distribution also implies a cost βe, such that distribution cost is βees, or,
according to (21), βeed/(1− εe).

5.4 Heat distribution

Heat demand and heat generation are specified individually for each area, cf.
Section 3. Heat transmission between areas is not possible in the model.

Heat distribution in district heating network is possible within any area. This is
not subject to any constraints, i.e. it is assumed that a sufficiently strong network
exist, in line with the assumptions in relation to the electricity distribution. There
is a loss, proportional to the heat generation.

Similarly to the case of electricity distribution the loss implies that

hd = hs(1− εh) (22)

where hd and hs are the amounts of heat arriving at the demand end and leaving
the supply end (i.e., what is produced), respectively.

Heat distribution also implies a cost βh, such that distribution cost is βhhs or,
according to (22), βhhd/(1− ε).

5.5 Implications for prices

The costs and losses of distribution will imply that the prices (or more precisely,
marginal costs, cf. Section 12.1) of electricity and heat will differ between the
producer node and the consumer node in a region. Further, transmission costs
and losses will imply that electricity prices will differ between generation nodes in
different regions. In Section 12 a broader discussion of prices will be given, here
we present preliminary results relative to distribution and transmission.

Thus, let πe
d and πh

d denote the prices of electricity and heat, respectively, as
perceived by the demand side (however, disregarding taxes, see Section 6), and
let similarly πe

s and πh
s denote the prices of electricity and heat, respectively,

as perceived by the supply side (i.e., producers’ sales prices). Let βe and βh

denote distribution costs of electricity and heat, respectively, and let βx denote
the transmission cost of electricity. All these costs are specified on a per unit basis
at the generation node.
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Then the following relations are assumed to hold between the electricity prices
at a consumer node and at a producer node in the same region:

πe
d = (

1
1− εe

)(πe
s + βe) (23)

and similarly for heat prices

πh
d = (

1
1− εh

)(πh
s + βh) (24)

For electricity transmission the implications are that prices in two generation
nodes, where one has import from the other, that prices will be higher in the node
that imports. If there is no active transmission constraint between the two nodes,
then the relations between the prices will be

πe
i = (

1
1− εx(j,i)

)(πe
j + βx(j,i)) (25)

where subindexes i and j denote importing and exporting nodes, respectively.
If the transmission constraint is active then this need not hold but rather the

following relation holds

πe
i ≥ (

1
1− εx(j,i)

)(πe
j + βx(j,i)) (26)

See further Section 12.
Transmission implies a cost. Thus, if x is the vector of transmission quantities,

specified at the exporting nodes, then the associated cost will be Cx(x). Cx will
be assumed to be convex.

5.6 Implications for the objective function

With the introduction of distribution and transmission costs the objective function
in (64) or (66), with specification as e.g. in (3), should be modified.

We shall consider the distribution and transmission costs as part of the cost
side in (64). Hence the function C should be taken to consist of three components,
relative to generation, distribution and transmission, respectively. Hence, with the
notation introduced above, C is given as

C(es, hs, x) = Cg(es, hs) + Cd(es, hs) + Cx(x) (27)

Consequently, (64) is modified to

max
ed,es,hd,hs,x

[Ue(ed)+Uh(hd)+o+πe
ded +πh

dhd− (Cg(es, hs)+Cd(es, hs)+Cx(x))]

(28)
subject to the relevant constraints. The budget constraint (65) is similarly with
the introduced notation specified to

πe
cec + πh

c hc + o = B (29)

Hence, (64), (66) or (3) are modified to

max
ed,es,hd,hs,x

[Ue(ed) + Uh(hd)− C(es, hs, x)] (30)

The expressions may be further specified according to assumptions. Thus, if
for instance Cd is assumed linear then with the already given notation Cd may be
given as

βees + βhhs (31)
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6 Taxes

Taxes may be included in various ways. Here, we shall discuss the following types
that are implemented

• fuel taxes, for each fuel proportional to the amount consumed in transfor-
mation

• emission taxes, for each emission type proportional to the amount emitted

• consumer taxes, proportional to the consumed amount of energy (electricity
and heat, respectively)

Other consumer taxes, proportional to the cost of consumed energy (electricity and
heat, respectively) are also discussed, see Section 6.4 The introduction of taxes will
among other things imply that in relation to the exchange of electricity and heat
the amount paid by the consumer will be different from the amount received by
the producer.

6.1 Fuel taxes

The addition of a tax on the applied fuel is straightforward. Thus, let two tax
rates tf0 and tf1 be specified, such that tf0 is given on a per GJ basis and tf1 is given
on a relative basis. Then if πf is the fuel price on a per GJ basis without tax, the
fuel cost entering the model should be (πf + tf0 )tf1 on a per GJ basis.

6.2 Emission taxes

Emission taxes may be implemented in a way similar to that of fuel taxes. Thus,
let the emission from a particular combination of fuel and technology be given as
εmf where f is the amount of fuel and εm is a constant. Thus, with an emission tax
of tm and a fuel price of πf the fuel cost entering the model should be πf + tmεm.

6.3 Consumer energy taxes

We consider taxes te and th on electricity and heat, respectively, such that a
consumer buying ed units of electricity at the price πe

d (excluding taxes) and hd

units of heat at the price πh
d (excluding taxes) pays (πe

d + te)ed + (πh
d + th)hd for

this.
This cost should appear in (65). Observing that (65) should be specified with

respect to consumer quantities and prices, it is seen that it then reads

(πe
d + te)ed + (πh

d + th)hd + o = B (32)

Now (64), (66) or (3) are modified to

max
ed,es,hd,hs,x

[Ue(ed) + Uh(hd)− teed − thhd − C(es, hs, x)] (33)

6.4 Value added taxes

As concerns a value added tax with rate v on energy consumption in addition to
the above tax this would similarly transform (65) into

(1 + v)((πe
d + te)ed + (πh

d + th)hd) + o = B (34)

However, in this case an attempt to eliminate both the prices and the term o in
(64) or (66) will not be successful.

The reason for these limitations may also be discussed in relation to the prices.
If these were known it would indeed be possible to operate with the tax as in (34).
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These prices could e.g. be specified as being equal to marginal generation costs
such that the following two constraints were added to (64) - (65):

πe
s =

∂C(e, h)
∂e

(35)

πh
s =

∂C(e, h)
∂h

(36)

where the prices (πe
s , π

h
s ) and (πe

d, π
h
d ) are connected otherwise, e.g. due to the

transmission and distribution, cf. Section 5. However, this possibility is not im-
plemented.

It will be possible to include a value added tax v if this applies to all goods.
In this case (34) would become

(1 + v)((πe
d + te)ed + (πh

d + th)hd + o) = B (37)

and the situation is similar to the one in (32) except that the budget B is reduced
to B/(1 + v), i.e., (34) is similar to

(πe
d + te)ed + (πh

d + th)hd + o = B/(1 + v) (38)

It is obvious that this will not change the optimal solution values of e and h,
although o will be influenced.

This illustrates that in relation to the essential variables in the model, viz., e
and h, the constraint (65) is not really significant. Hence, (65) does not reflect the
influence of the budget on e and h. Therefore any attempt to model changes of
the budget should be done indirectly, in particular through the functions Ue and
Uh in (63).

7 Demands

In this section we investigate various standard functions for describing elastic de-
mands. We shall describe the mathematical form of demand functions, and some
of the major consequences of the functional form, in particular the own price
elasticity, the cross price elasticity and the income elasticity.

The point of departure is the following formulation:

max[U(Y1, ..., Yn)] (39)
n∑

i=1

πiYi = B (40)

where U : Rn → R is the consumers’ utility function, Yi is the consumption of
good i, πi is the price of good i and B is the consumers’ budget.

In general terms, the solution may, under suitable assumptions implying unique-
ness, be written for good i as

Y ∗
i = Y ∗

i (π1, ..., πn; B) (41)

i.e., depending of the prices of the individual goods and the consumers’ budget, in
addition, of course, to the specific form of the function U . Therefore, once (41) is
obtained, (39) - (40) are in a sense obsolete.

In the sequel this will be made explicit for different standard forms of U .

7.1 The Cobb-Douglas function, CD

The n-dimensional Cobb-Douglas function may be written as

n∏

i=1

Y αi
i (42)
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where αi are positive constants. It is often assumed that
∑n

i=1 αi = 1.
Taking this as the utility function in (39), the consumers’ problem of max-

imising utility under the budget constraint (40) may be solved as follows. The
expression in (39) may be substituted by max[

∑n
i=1 αi ln Yi] without changing the

optimal solution. Introducing a Lagrangian multiplier µ to (40), the problem (39)
- (40) may be written

max[
n∑

i=1

αi lnYi − µ(
n∑

i=1

πiYi −B)] (43)

First order optimality conditions are

∂(
∑n

i=1 αi ln Yi − µ(
∑n

i=1 πiYi −B))
∂Yi

=
αi

Yi
− µπi = 0 (44)

or similarly

Yi =
αi

µπi
(45)

Introducing this into (40) yields
n∑

i=1

πi
αi

µπi
= B (46)

implying

µ =
∑n

i=1 αi

B
(47)

which again, using (45) and assuming
∑n

i=1 αi = 1, yields

Yi =
αiB

πi
(48)

This is the so called uncompensated (or Marshallian) demand, the name indi-
cating that the change of prices is not associated with a simultaneous change in
the budget B.

Characteristic properties of demand functions are the own price elasticity, the
cross price elasticity and the income elasticity.

The own price elasticity, i.e., the relative increase in demand for a relative
(percentage) increase in the price may from this be found as

∂Yi

Yi

∂πi

πi

=
∂Yi

∂πi

πi

Yi
= −1 (49)

That is, an increase of x% in the price πi implies an approximate decrease of x%
in Yi.

The cross price elasticity, i.e., the relative (percentage) increase in demand of
good i for a relative increase in the price of another good j is found as

∂Yi

Yi

∂πj

πj

=
∂Yi

∂πj

πj

Yi
= 0 (50)

As seen, the demand for good i is independent of the prices of other goods j, j 6= i.
Finally, the income elasticity, i.e., the relative increase in demand for a relative

increase in the income (or budget B in (65)) is found as

∂Yi

Yi

∂B
B

=
∂Yi

∂B

B

Yi
= 1 (51)

That is, an increase of x% in the income B implies an approximate increase of x%
in Yi.
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7.2 The Constant Elasticity of Substitution function, CES

The n-dimensional Constant Elasticity of Substitution function, CES, may be
written as

(
n∑

i=1

αiY
(σ−1)/σ
i )σ/(σ−1) (52)

where αi are positive constants. It is often assumed that
∑n

i=1 α
σ/(σ−1)
i = 1.

Assuming σ/(σ − 1) < 1 and αi > 0 the function is concave in Y
(σ−1)/σ
i and

the expression in (39) may be substituted by max[
∑n

i=1 αiY
(σ−1)/σ
i ]. Applying

the same technique as above the expression similar to (43) may be written as

max[
n∑

i=1

αiY
(σ−1)/σ
i − µ(

n∑

i=1

Yi −B)] (53)

with first order conditions

∂(
∑n

i=1 αiY
(σ−1)/σ
i − µ(

∑n
i=1 πiYi −B))

∂Yi
= αi(

σ − 1
σ

)Y − 1
σ

i − µπi = 0 (54)

or

Yi =
1
µσ

(
αi

πi
)σ(

σ − 1
σ

)σ (55)

Inserting this into (40) yields

1
µσ

=
B∑n

i=1 ασ
i π1−σ

i

(
σ

1− σ
)σ (56)

Introducing this into (55) gives

Yi = B(
αi

πi
)σ 1∑n

i=1 ασ
i π1−σ

i

(57)

Then also for the CES function an explicit expression for the uncompensated
demand has been derived. It is seen that the demand for good i as expressed in
(57) will depend on the prices of all other goods j, j 6= i, in contrast to (48).

The own price elasticity, the cross price elasticity and the income elasticity
may then be found as

∂Yi

Yi

∂πi

πi

= −σ + (1− σ)
ασ

i π1−σ
i∑n

i=1 ασ
i π1−σ

i

(58)

∂Yi

Yi

∂πj

πj

= (σ − 1)
ασ

j π1−σ
j∑n

i=1 ασ
i π1−σ

i

(59)

∂Yi

Yi

∂B
B

= 1 (60)

Observing that πiYi and πjYj are the spending on good i and j, respectively, out
of total budget B, the last expressions in (58) and (59) may (using (40) and (57))
be interpreted as the budget shares of good i and j, respectively.
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Figure 2: Substitution possibilities in various standard functions related to CES.

7.3 Other standard functions

Other standard functions may be used. Thus, elasticities may be specified by
nested CES functions, or LES, Leontief, Stone-Geary or other functions that are
commonly used.

In Figure 2 some classical illustrations of substitution are indicated. The upper
figures show CES functions, the one on the left indicating a large substitution
possibility the other a low subsitution possibility. The bottom left figure indicates
the case where substitution is infinite. This case may be derived as a special case
of the CES function with σ = ∞. The bottom right figure indicates the Leontief
function where there is no substitution possibilities. Also this may be derived as
a special case of the CES function, now with σ = 0.

7.4 Substitution between electricity and heat

Now consider the introduction of electric heating, viz., the possibility to convert
electricity to heat for heating purposes. Assume two techniques available, direct
conversion (implying a one-to-one relationship between the electricity used and
the heat generated) and heat pumps (where one unit of electricity will generate
e.g. 3 units of heat).

Introducing this into the Leontief representation will result in Figure 3. In
this figure the slopes (-1 and - 0.33, respectively) of the two middle segments
correspond to the two energy conversion efficiencies and the lengths (measured
vertically and horisontally, respectively) correspond to the quantities that may be
converted.

For high electricity prices the point (Ha, Ea) is relevant, where no conversion
from electricity to heat takes place. As the electricity price decreases from such
high value, application of heat pumps becomes attractive, which makes the point
(Hb, Eb) (full use of heat pumps) relevant. If the electricity price gets even lower,
also direct conversion of electricity to heat becomes relevant, with full exploitation
of this represented in the point (Hc, Ec).

The modeling of the balances of electricity and heat may be illustrated as
follows, disregarding losses in distribution:

∑

g∈G

eg −
∑

j∈J

ej = e (61)
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Figure 3: Substitution possibilities with electricity to heat conversion.

∑

g∈G

hg +
∑

j∈J

ηjej = h (62)

Here G is the set of generation technologies (excluding electricity to heat con-
version) and J is the set of electricity to heat conversion technologies. ηj is the
efficiency of electricity to heat conversion technology j.

7.5 Implementation

As discussed in Section 8 the specification of the demand may conveniently be
done in relation to a utility function that is additively separable with respect to
electricity and heat and linear with respect to other goods.

Hence, for representing the own price elasticities the investigation of standard
functions showed that (at least) the Cobb-Douglass function may be used as a
schematic for construction of demand functions. Other properties like cross price
elasticity and income elasticity must be represented exogenously (although cer-
tain substitutions between heat and electricity may be represented as indicated in
Figure 3).

However, there is no reason why the modeling of the utility function should
be restricted to a standard function. Thus, any concave, increasing (i.e. non-
decreasing) function may be chosen. Or, in relation to the demand function (de-
mand as dependent on the price), any decreasing (i.e. non-increasing) function
(for electricity and heat, independently) may be used.

On the other hand, since data may be given in relation to standard forms such
as e.g. a Cobb-Douglass or a CES function, the own price elasticities of such
function should (and can) then be approximated in the implementation.

Given that the model is linear (i.e., piecewise linear and convex) this may be
done as specified in Section 11.3.

8 The Objective Function and Equilibrium Con-
ditions

In this section we derive the basic idea for the specification of equilibrium con-
ditions. The assumptions taken are mainly: two products (electricity and heat),
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many producers, many technologies, one time period (a static model), one geo-
graphical area, one country, no transmission or distribution costs or constraints,
smooth (once continuously differentiable) functions, one consumer, short term
conditions. These assumptions are discussed and to some extent relieved in other
sections. In this section we go for the basic idea.

Assume therefore that the consumer has a utility function U : R3 → R (i.e.,
a real function with three real arguments) where the arguments are (e, h, o), i.e.,
electricity, heat and ”other”. It will be assumed that this is additively separable
and quasilinear, such that

U(e, h, o) = Ue(e) + Uh(h) + o (63)

where Ue : R → R and Uh : R → R. It will be assumed that Ue and Uh are
concave, and, as seen from (63), U is linear with respect to o.

We assume that there is one consumer with a total budget of B. Electricity
and heat are exchanged at the market at prices πe and πh, respectively.

Consider the following problem:

max
e,h,o

[U(e, h, o) + πee + πhh− C(e, h)] (64)

πee + πhh + o = B (65)

In this, C : R2 → R represents generation cost of electricity and heat; it is assumed
that C is convex. Further, (65) expresses the consumer’s budget restriction.

In (64) the terms (πee + πhh − C(e, h)) may be interpreted as the producer’s
surplus or utility. The problem (64) - (65) therefore expresses the maximisation of
the sum of producer’s and consumer’s utilities subject to the consumer’s budget
restriction.

Using (63) and (65), and observing that a constant term (viz., B in (65)) may
be eliminated from the objective function without influencing the optimal solution,
the problem (64) - (65) may be restated as

max
e,h

[Ue(e) + Uh(h)− C(e, h)] (66)

If it is assumed that the functions are continuously differentiable it is seen that
necessary optimality conditions for the problem (66) are

∇Ue(e) =
dUe(e)

de
=

∂C(e, h)
∂e

(67)

∇Uh(h) =
dUh(h)

dh
=

∂C(e, h)
∂h

(68)

Since the functions were assumed concave and convex, respectively, these condi-
tions are also sufficient optimality conditions.

For non-smooth functions the generalised gradient ∂, may be used and (67) -
(68) may be reformulated to

0 ∈ ∂(Ue(e) + Uh(h)− C(e, h)) (69)

Alternatively the desired notion of balanced marginal values is expressed in rela-
tion to the problem (3) - (7), in terms of the Karush-Kuhn-Tucker conditions of
optimisation. This will be further discussed in Section 11.

As seen, the conditions state that at the optimum the marginal values of the
utility function are equal to the marginal generation costs (partial derivatives) of
the two goods e and h. This is precisely the kind of result we want.

Observe that we would arrive at conditions (67) - (68) also by starting di-
rectly from (66). However, we found (65) conceptually appealing although the
importance of this constraint is otherwise limited, see further Section 6.4.
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The result was derived without restrictions on the sign of the variables e, h or
o. However, in reality we want these to be positive. This could be achieved by
imposing such constraints on the variables in (64) - (65) or in (66). However, it is
quite obvious that in the reality which we are modeling, such explicit constraints
are not relevant, since they should be automatically fulfilled if the model is other-
wise sound. We will therefore prefer to achieve the result by appropriate selection
of the functions Ue, Uh and C involved. That this will indeed be possible (at
the cost of working with nonsmooth functions) can be demonstrated rigourously,
however, we omit this here; see Section 11.

A consequence of the assumed form of the function U in (63) is that it may be
recovered by integration of the partial derivatives. Hence,

U(e, h, o) = U(0, 0, 0) +
∫ e

0

(∇Ue(ε))dε +
∫ h

0

(∇Uh(η))dη + o (70)

Implications

The implications of using (66), or generalisations like (69), are wider than the
relations (67) - (68) between the consumers and the producers.

First, as seen from the producers’ component in (66), specified in (3) - (6), a
balance will be attained between heat and electricity, even if the consumers’ utility
function is specified as separable. The balance will be with respect to quantities
as well as prices.

Second, the year is subdivided into time segments, and some generation tech-
nologies, in particular hydro storages, imply a linkage between the segments.
Therefore an equilibrium between electricity prices in the various time segments
will be attained, as far as the physical constraints (storage and transmission ca-
pacities) permit. As just pointed out, this may have implications for the heat side
as well.

Third, the long term aspects, covering future years, is represented by the pos-
sibility to perform investments. Therefore long term marginal costs may become
price setting in periods with capacity shortage. In periods with sufficient capacity
the short term marginal costs prevail.

Fourth, the subdivision of the geographical area represented in the model im-
plies that transmission of electricity will take place according to the physical pos-
sibilities and economic conditions specified. This will imply equilibrium relations
between geographical regions according to the transmission conditions specified.

Thus, the equilibrium conditions cover the two types of agents (producers and
consumers), the two products (electricity and heat), the various relevant geograph-
ical entities (electrically divided regions), and the various temporal entities (short
terms (within the year) and long terms (between years)).

9 Total Model - One year

In the above presentation a number of aspects have been discussed individually. In
this section we shall combine the various aspects. We still keep to a quite general
formulation while the linear programming implementation will be presented in
Section 11. The purpose here is to show that bringing the individual aspects
together will not violate the conclusions derived for each of the aspects individually.
An additional purpose is to present the general structure of the model in sufficient
detail to permit the derivation of the general interpretations to be presented in
Section 12. The presentation given in this section is limited to modeling of one
year, while dynamic aspects are treated in Section 10.

As concerns the objective function this is specified with components for each
of the relevant geographical entities. That is, the consumers’ electricity compo-
nents Ue, teed should be specified for all regions, and similarly the consumers’
heat components Uh, thhd should be specified for all areas. Further, generation
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components C(es, hs) should be specified for all areas. All distribution costs dees

and dhhs should be specified on the relevant regions and areas, respectively, and
all transmission costs should be specified for all pairs of regions. Finally, emission
costs should be specified for each country.

As concerns the temporal dimension, components like demand and generation
shall be specified according to each subinterval of the year, while components like
tax rates or fuel prices may be more reasonable represented by values that are
assumed constant throughout the year.

Let the following sets be given in the model

• C: the countries, with elements c

• R: the regions, with subsets

– R(c): the regions in country c

• A: the areas, with subsets

– A(c): the areas in country c

– A(r): the areas in region r

• G: the generation units, with subsets

– G(c): the set of generation units in country c

– G(r): the set of generation units in region r

– G(a): the set of generation units in area a

• T : the time periods within the year

• M : the types of emission

Indexes

• a: area

• r: region

• c: country

• t: time period within the year

• s: supply

• d: demand

• m: emission type

Let the variables in the model be

• et
s,g: electricity generation on unit g in period t

• ht
s,g: heat generation on unit g in period t

• er,t
d : electricity demand on region r in period t

• ha,t
d : heat demand on area a in period t

Let the functions in the model be

• Kt
g: Generation cost on unit g during time period t

• Xx(r,ρ): investment cost for transmission capacity

• gt
g: technical constraint on unit g time period t
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• Φm: emission of type m

Then the principles of the total model may be specified as follows.
The criterion function may be specified as

max[
∑

t∈T {
∑

c∈C{
∑

r∈R(c) Ue,r,t(er,t
d ) (71)

+
∑

a∈A(c) Uh,a,t(ha,t
d )

−∑
r∈R(c) teer,t

s (1− εe
r)−

∑
a∈A(c) thha,t

s (1− εh
r )

−∑
p∈A(c) Kt

p(e
t
s,p, h

t
s,p)

−∑
(ρ,r):ρ∈R(c),ρ6=r βx(r,ρ)x(r,ρ) −∑

(ρ,r):ρ∈R(c),ρ 6=r Xx(r,ρ)

−∑
r∈R(c) βe

ret
d/(1− εe

r)−
∑

a∈A(c) βh
aht

d/(1− εh
a)}}]

Here the terms in the first and second lines are recognised as the consumers’
utilities, cf. e.g. (66). The third line represents consumers’ energy taxes, cf.
Section 6.3, but possibly also other taxes, (cf. Section 6.3 and Section 6.4). The
fourth line represents generation costs, cf. (1), including any fuel and emission
taxes, cf. Section 6.1 and 6.2, and also including operations and maintenance
costs and investment costs, cf. Section 4.2. The fifth line represents transmission
operations and investments costs, cf. Section 5.1 (the notation is simplified, but
it is understood that double counting should be prevented), and the sixth line
represents distribution costs, cf. Section 5.3 and Section 5.4.

The electricity balances are given as
∑

g∈G(r)

et
s,g +

∑

ρ∈R,ρ 6=r

x(ρ,r),t(1− εx(ρ,r)) = (72)

er,t
d /(1− εe

r), ∀r ∈ R, ∀t ∈ T

The heat balances are given as
∑

g∈G(a)

ht
s,g = ha,t

d /(1− εh
r ), ∀a ∈ A, ∀t ∈ T (73)

Restriction on individual generation units, including those relating to investments,
cf. e.g. (11) and (12), are given by

gt
g(e

t
s,g, h

t
s,g) ≤ 0, ∀g ∈ G, ∀t ∈ T (74)

Upper limits on emissions may be given e.g. as follows, where it is assumed that
a maximal annual amount is specified for each country

∑

g∈G(c)

∑

t∈T

Φm(et
s,g, h

t
s,g) ≤ mc, ∀c ∈ C, ∀m ∈ M (75)

In addition to that listed above in (72) - (75), there may be lower and upper
bounds on the individual variables, as e.g. (11), (12), (20), or further refinements
as described e.g. in relation to storage in Section 4.3.

In addition to the above specifications any number of details may be added.
This may influence the solution of the model, of course. However, as long as the
formulation is kept linear this will not jeopardise the general results given.

10 The dynamics

The model is implemented as a dynamic model as follows. Each year is subdi-
vided into sub periods, as described in Section 4. During the simulation of one
year, all time sub periods are considered interdependently, through a simultaneous
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optimization. The exogenous parameters relative to this are among other things
installed generation and transmission capacities at the beginning of the year.

The result of the simulation is a number of physical quantities, including new
capacities for generation and transmission installed during the year. These are
then transferred to the beginning of the next year.

Hence, the inter annual dynamics of the model may be characterized as myopic.

11 Linear Programming Implementation

The model is implemented as a linear programming model.
The advantages of this is that it provides more easy and efficient numerical

solution of the model. Moreover, most of the data is not available with an accuracy
that justifies nonlinear relations. Finally, the equilibrium conditions, e.g. (69),
may be elegantly expressed as the equivalent KKT conditions, see Section 11.4.

The disadvantages are that for certain aspects the linear functions are theoreti-
cally inconvenient. This for instance holds true for specification of elastic demands,
that traditionally are modelled with continuous and smooth relationships between
price and demand. Also upon interpretation of results of the model simulations
discontinuous price movements may be found. A number of theoretical results are
traditionally derived under assumption of strict convexity (or concavity, as the
specific circumstances dictate) of some of the functions.

The linear modeling does guarantee most other of the usually found essential
characteristics of theoretical models and also some empirical observations. Thus,
although the supply cost function as derived in (3) is not smooth, it is convex
(in particular piecewise linear); consequently the marginal cost of supply is non-
decreasing and piecewise constant (and hence, at some points, not unique but
rather to be given only within an interval). What might be lacking for some
theoretical results is thus the strict convexity of the supply cost function and the
continuity of the marginal cost function. The linear functions do not guarantee a
unique solution to the model, nor, as just pointed out, unique prices. It is believed
that this will only exceptionally be of any importance.

11.1 The Generation System

The generation system is modelled by linear relations as already specified, see
Section 2.

11.2 Transmission and Distribution

Transmission and distribution are modelled by linear relations as already specified,
see Section 5.

11.3 Demands

The demand structure is specified as follows.
Consider electricity demand in one region and for one time period.
From the previous discussions in Section 8 and Section 7 it follows that we

should choose a decreasing function for demand as depending on the prices.
Given that the model is linear (i.e., piecewise linear and convex) this may be

done as follows. For the demand we first specify a nominal demand (that which
might be spcified in a model with inelastic demands). On top of this we specify
deviation steps, that link price steps with steps for changes in demand.

Thus, in a model with inelastic demands the balance between generation and
demand might be written

∑

i

et
i = D̂t (76)
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Figure 4: Consumption of electricity and heat depend on the price.

where et
i is generation on unit i during time period t, and D̂t is demand during time

period t. Introducing variables ut
s (representing increased consumption relative to

the nominal one, viz., D̂t) and dt
r (representing decreased consumption relative to

D̂t), constrained to 0 ≤ ut
s ≤ ut

s and 0 ≤ dt
r ≤ d

t

r, we substitute (76) by

∑

i

et
i = D̂t +

∑
s

ut
s −

∑
r

dt
r (77)

The total demand Dt is seen on the right hand side of (77). The size of this will
be determined endogenously. This way, the demand is elastic.

It follows that
∑

s

dt
s = D̂t −Dt (78)

∑
r

ut
r = Dt − D̂t (79)

Introducing positive numbers αt
r and βt

s, and adding the following terms to the
objective function

∑
s

αt
su

t
s −

∑
r

βt
rd

t
r (80)

the balancing of demand Dt against price is seen to be achieved. See also Figure
4 and Figure 5.

Assuming αt
s+1 > αt

s, αt
1 > βt

1, βt
r < βt

r+1, optimization will assure that either
are all dt

s = 0 or all ut
s = 0, and further that if ds+1 > 0 then dt

s = d
t

s, and if
ur+1 > 0 then ut

r = ut
r.

The consumers’ marginal utility πt
d will satisfy

αt
r+1 ≥ πt

d ≥ αt
r if dr > 0 and dr+1 = 0 (81)

βt
s+1 ≤ πt

d ≤ βt
s if us > 0 and us+1 = 0 (82)

As seen, the demand function is piecewise constant. Apart from this functional
form it may be specified arbitrarily, as long as it is non-increasing. Thus, it is
indeed quite flexible.

There should be one function specified as in (77) and (80) for heat demand in
each heat area and for each time period, and one function for electricity demand
in each electricity region and for each time period.

Substitution between electricity and heat is discussed in Section 7.4.
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Figure 5: Trajectory of nominal demand (electricity or heat).

11.4 Equilibrium and KKT Conditions

Now consider the equilibrium conditions, e.g. (69). Within the linear formulation
an equivalent condition may be stated as follows.

We rewrite the problem (71) - (75) to the following compact form

max
x

[f(x)] (83)

g(x) ≤ γ (84)
h(x) = η (85)

Here, x represents the decision variables in the problem, f , g and h represent the
various functions.

If the problem is well defined then there is an optimal solution x∗ (although
not necessarily unique). Then, as (71) - (75) is a linear programming problem,
there exist Lagrange multiplier vectors λ and µ corresponding to (84) and (85),
respectively, satisfying

∇xf(x∗) = λ∇xg(x∗) + µ∇xh(x∗) (86)
λ ≥ 0 (87)

λ(g(x∗)− γ) = 0 (88)

These conditions, together with the obvious conditions of feasibility of x∗ in (84)
- (85), are the so called Karush-Kuhn-Tucker (or Kuhn-Tucker) conditions.

As just explained, if an optimal solution x∗ exists then there exist Lagrange
multiplier vectors λ and µ such that these conditions hold at x∗. However, the
argumentation also holds the other way round, i.e., if a (x∗, λ, µ) can be found
satisfying (86) - (88) then x∗ is optimal in (83) - (85).

11.5 Modeling System Implementation

The model (71) - (75) is implemented in the GAMS modeling language. See
further the documents mentioned on page 5. However, the particular modeling
language does not influence the theoretical properties of the model: it is still
linear. The modeling and solution environment applied ensures among other things
that an optimal solution is found along with associated dual variables (Lagrange
multipliers), see Section 11.4 and Section 11.6.

We point out that from the information about the solution supplied by GAMS
it is not known whether the solution and/or the dual variables are unique.
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11.6 Solution Output

The result of the solution effort is an optimal solution and associated Lagrange
multipliers. The Lagrange multipliers are often called dual variables, and their
optimal values the dual solution, and correspondingly the optimal solution to the
problem may be called the primal solution.

The primal solution consist of optimal values of those entities (variables or en-
dogenous variables) in which we in part have formulated the problem. Typically
this is generation and demand of electricity and heat, investment in generation
capacities, and in transmission capacities, according to the geographical and tem-
poral extension of the problem.

The dual variables are not used in the model formulation, however, they are
very useful for the interpretation of the results, as they may be interpreted as
prices; sometimes the dual variables are also called shadow prices. See Section 12.

12 Interpretations

The result of the optimization will be optimal values of primal and dual variables,
as explained in Section 11.6, such that the equilibrium conditions are fulfilled in
the form of the KKT conditions, see Section 11.4.

In general terms it is quite easy to interpret the primal variables, as they enter
directly in the model formulation.

More difficulty may be encountered in the interpretation of the dual variables.
As is known from optimization theory they can be interpreted as marginal costs
or prices, however, it is not always obvious how. We therefore give interpretations
of some of the central dual variables in this section.

As concerns the constraints (72) - (75) they are of physical nature, and since
they for a well and solved formulated model will be fulfilled, there is not more
information to be derived from the optimal solution than is already contained in
the formulation.

In contrast to this, the criterion function (71) is not necessarily easy to inter-
pret.

Optimal values of primal and dual variables may be combined to useful mea-
sures, in Section 12.4 we discuss in particular consumers’ and producers’ surplus.

12.1 Marginal costs and shadow prices

The objective function (71) is imperative in the determination of the optimal
values of the decision variables in the problem (71) - (75). However, the optimal
value of the function in itself may contain limited information, while changes in
this optimal values, as driven by changes in some of the parameters defining the
problem (71) - (75), can be given important interpretations, as will be derived in
this section.

We rewrite the problem (71) - (75) to the following compact form

Z∗(α, γ, η) = max
x

[f(α; x)] (89)

g(α;x) ≤ γ (90)
h(α; x) = η (91)

which is equivalent to (83) - (85), except that in addition to γ and η also α, that
represents other parameters (efficiencies, demands, generation capacities, etc.) in
the problem, has been explicitly identified. Also (86) - (88) is similar with this
formulation:

∇xf(α; x∗) = λ∇xg(α;x∗) + µ∇xh(α;x∗) (92)
λ ≥ 0 (93)

λ(g(α; x∗)− γ) = 0 (94)
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It is well known that λ and µ may be interpreted as shadow prices. This means
that if Z∗(α, γ, h) is continuously differentiable at the particular values (α, γ, η)
then

∂Z∗(α, γ, η)
∂a

=
∂(f(α; x∗)− λ(g(α; x∗)− γ)− µ(h(α; x∗)− η))

∂a
(95)

and similar results hold for γ and η.
The expression (95) (and the similar ones for γ and η) means that the change

in Z∗ resulting from a change in (α, γ, η) may be estimated, once x∗, λ and µ
are known. This latter information is produced by most standard optimization
software in the form of dual variables.

Relative to γ and η the expression (95) takes particularly simple forms, viz.,

∂Z∗(α, γ, η)
∂γ

= λ (96)

∂Z∗(α, γ, η)
∂η

= µ (97)

These two latter expression have the interpretation that a unit change in the
right hand side of (84) or (85) lead to an approximate change in Z∗ of λ or µ,
respectively.

From this the expression ”shadow price” may be justified. For instance the
decision maker will be willing to ”pay” up to µ for one unit increase in η in (85).

In the following sections we shall give some more specific interpretations.
The expressions (95) - (97) presume for validity that Z∗ is continuously dif-

ferentiable at the point (α, γ, η). In general, this is not the case. This is closely
related to uniqueness of x∗, λ and µ, since uniqueness of all these three vectors im-
plies continuous differentiability of Z∗. Optimization software does not generally
provide information about uniqueness of x∗, λ or µ.

If Z∗ is not continuously differentiable then more general expressions may be
stated; as explained, this implies substitution of (67) - (68) by (69) (where in turn
the latter one is substituted by the KKT conditions (86) - (88)). The practical
implication of absence of continuous differentiability is that the shadow values
(marginal cost, prices) are not unique.

If a solution exists but the three vectors are not unique then λ may be inter-
preted as follows. Any value of λ consistent with (86) - (88) is an upper bound
on the increase of Z∗ for a unit increase on γ, and any value of λ, consistent with
(86) - (88) is a lower bound on the decrease of Z∗ for a unit decrease on γ. Similar
interpretation may be applied to µ and η.

As concerns the units in which the shadow prices are expressed this follows from
the units in which the objective function (83) and the corresponding constraints
(84) or (85) are expressed. See the sections below for specifications.

Finally observe that reformulation of the objective function or a constraint
to a mathematically equivalent form (such that the optimal solution x∗ is unaf-
fected) may change the values and interpretations of λ and µ. See Section 12.2 for
examples.

12.2 Electricity prices

The equation (72) expresses balance between electricity supply (left hand side)
and demand (right hand side) in region r time period t. Let µt

r be the associated
Lagrange multiplier. It follows from the discussion in Section 12.1 that µt

r may
be interpreted as the marginal cost, or shadow price, of electricity generation in
region r time period t.

Obviously the numerical value of the shadow price will depend on the units
used in specifying the expressions. Assume in the following that the objective
function (71) is expressed in MMoney (where MMoney is millions of e.g. Euro,
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USD, Mark, Kroner or Litas, etc.) and that the electricity balance equation (72)
is expressed in MW.

The unit in which µt
r is expressed is millions of money per MW, MMoney/MW.

This follows from (71) being expressed in MMoney and (72) being expressed in
MW.

To get this in the more familiar unit of Money/MWh, the following should be
done. First, µt

r should be multiplied by 106 to get MMoney converted to Money.
Second, the result should be divided by the number of hours for which this equation
holds, viz., wt. Hence, the marginal price of electricity generation in region r time
period t is 106µt

r/wt Money/MWh.
From the general idea of the model construction, cf. Section 8, it follows that

there is equality between producers’ marginal utility and the producers’ marginal
costs, however, appropriately adjusted for the costs and losses of transmission and
distribution.

As seen, if the right hand side of (72) is increased by one unit then, according
to the interpretation around (97) and the precise formulation of (72), this could be
compensated by a unit increase in generation. Therefore 106µt

r/wt is the marginal
cost of generation.

Now, (72) may be reformulated to the following mathematically equivalent
form:

(
∑

g∈G(r)

et
s,g +

∑

ρ6=r

x(ρ,r),t(1− εx(ρ,r)))(1− εe
r) = (98)

er,t
d , ∀r ∈ R, ∀t ∈ T

This will not change the optimal solution, however, it will change the numerical
value of µt

r. Consistent with this, the interpretation of 106µt
r/wt in relation to (98)

is no longer as that of marginal cost of generation, but as the marginal marginal
cost of supply at the consumers’ locations. (These two meanings will differ if there
is a loss or a cost associated with distribution.) Observe that according to (67)
the marginal marginal cost of supply at the consumers’ locations will be identical
to consumers’ marginal utility (disregarding consumer taxes).

This illustrates the importance of specificity in the interpretations.

12.3 Heat prices

The interpretation of (73) is quite similar to that of (72) in Section 12.2. Thus, if
µt

a is the Lagrange multiplier to (73) for area a time period t associated with the
optimal solution, then 106µt

a/wt is the marginal generation price of heat in area
a time period t, expressed in Money/MWh.

12.4 Consumers’ and producers’ surplus

From knowledge of consumers’ utility functions, the producers’ marginal cost func-
tions, the amounts consumed and produced and the associated prices it is possible
to derive consumers’ and producers’ surplus as follows.

Consider electricity consumption for a particular time period and a particular
electricity demand region. Let the consumed amount of electricity be D and let
the consumers’ price be πe

d. With the consumers’ utility function specified as in
(63) the consumers’ surplus may be expressed as

∫ D

0

(Ue(e)− πe
d)de (99)

In particular observe that this result depends on the assumed additivity of the
utility with respect to electricity and heat. From this, changes in consumers’
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utility with respect to electricity from a situation characterized by a price and
demand pair (πe0

d , e0
d) to a situation (πe1

d

d , e1) may be derived as

∫ e1
d

0

(Ue(e)− π
e1

d

d )de−
∫ e0

d

0

(Ue(e)− π
e0

d

d )de (100)

=
∫ e0

d

0

(Ue(e)− π
e1

d

d )de +
∫ e1

d

e0
d

(Ue(e)− π
e1

d

d )de

−
∫ e0

d

0

(Ue(e)− π
e0

d

d )de

=
∫ e0

d

0

(πe0
d

d − π
e1

d

d )de +
∫ e1

d

e0
d

(Ue(e)− π
e1

d

d )de

= (πe0
d

d − π
e1

d

d )e0 + (e0
d − e1

d)π
e1

d

d +
∫ e1

d

e0
d

Ue(e)de

Similar to this, the changes in consumers’ surplus with respect to heat from a
situation characterized by a price and demand pair (πh0

d , h0
d) to a situation (πh1

d , h1
d)

may be derived as

(πh0
d

d − π
h1

d

d )h0 + (h0
d − h1

d)π
h1

d

d +
∫ h1

d

h0
d

Uh(h)dh (101)

Observe in particular, that in order to calculate changes in consumers’ surplus
it is sufficient to know the utility function Ue in the interval from e0

d to e1
d and

similarly Uh in the interval from h0
d to h1

d.
Total changes in consumers’ surplus are calculated by summation over all time

periods and all electricity demand regions.
As concerns producers’ surplus we may proceed as follows. Consider a spe-

cific geographical entity, where there is only one node of electricity and one node
of heat. Compare the changes from a situation characterized by a quadruple
(πe0

s , e0
s, π

h0

s , h0
s) to a situation (πe1

s , e1
s, π

h1

s , h1
s). The change in producers’ surplus

is then
πe1

s e1
s + πh1

s h1
s − C(e1

s, h
1
s)− (πe0

s e0
s + πh0

s h0
s − C(e0

s, h
0
s)) (102)

where C is the cost of generation, cf. (3).
Total changes in producers’ surplus are calculated by summation over all time

periods, all electricity generation regions and all heat generation areas.

12.5 Generality

We have here given a few examples of interpretation of model result. The same
principles of deriving interpretations may be applied to other relevant model el-
ements. The basis of the interpretation is as explained above the global optimal
solution and the associated dual variables. From this the specific interpretations
are derived according to the real content.

13 Conclusions

The present document has given the main background elements for the Balmorel
model. The main points presented here may be summarised as follows:

• The model represents generation, transportation and consumption of energy.

• The model is formulated as a convex model, or, more specifically, as a linear
(i.e., convex and piecewise linear) model.
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• The supply system includes electricity and heat, various generation units
including CHP, various fuels, variable costs, investment costs, emissions,
losses, distribution and transmission costs and losses, transmission limits,
fuel taxes, emission taxes and quota and other features.

• Demand is represented by a consumers’ utility function with respect to elec-
tricity and heat that is assumed to be additively separable between the two
goods, and for each of them to be non-increasing with increasing consump-
tion. Substitution possibilities between the two goods are represented oth-
erwise.

• The model has a distinction between geographical units, to represent possi-
bilities and costs in relations to transportation of electricity and heat, and
to represent various national and physical differences.

• The model has a resolution of time within the year, permitting e.g. repre-
sentation of demand variations and intertemporal storage (hydro, heat).

• As concerns the dynamic aspects over several years, the model is solved for
one year at the time, with the forward-looking mechanism (having implica-
tions for investment decision in that year) represented by knowledge of long
term marginal costs of investment.

• The guiding principle for the determination of the endogenous variables is
that there should be a balance between consumers’ and producers’ surplus,
as concerns the electricity and heat sectors. In this sense, the model is a
partial equilibrium model. The equilibrium conditions cover the two types
of agents (producers and consumers), the two products (electricity and heat),
the various relevant geographical entities (electrically divided regions), and
the various temporal entities (short terms (within the year) and long terms
(between years)).

• The equilibrium conditions are within the modeling context translated to
mean the KKT conditions.

• The model results include information about physical quantities like electric-
ity and heat generated according to time, space, generation technology and
fuel, and derived information that may be interpreted as e.g. marginal cost,
or producers’ sales prices, or consumers’ prices.

We should emphasize that any number of exogenous parameters may be in-
cluded in the model (as long as these are represented by linear relations) without
violating the basic mechanisms at the level of discussion applied in the present
paper. Hence all the conclusions derived here hold true for any implementation of
data structures, and therefore also for the particular one applied in the Balmorel
model, cf. the documents mentioned on page 5.
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